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The structure of the incompressible steady three-dimensional flow in a two-sided
anti-symmetrically lid-driven cavity is investigated for an aspect ratio I" = 1.7 and
spanwise-periodic boundary conditions. Flow fields are computed by solving the
Navier-Stokes equations with a fully spectral method on 128* grid points utilizing
second-order asymptotic solutions near the singular corners. The supercritical flow
arises in the form of steady rectangular convection cells within which the flow is
point symmetric with respect to the cell centre. Global streamline chaos occupying
the whole domain is found immediately above the threshold to three-dimensional
flow. Beyond a certain Reynolds number the chaotic sea recedes from the interior,
giving way to regular islands. The regular Kolmogorov—Arnold—Moser tori grow with
increasing Reynolds number before they shrink again to eventually vanish completely.
The global chaos at onset is traced back to the existence of one hyperbolic and two
elliptic periodic lines in the basic flow. The singular points of the three-dimensional
flow which emerge from the periodic lines quickly change such that, for a wide
range of supercritical Reynolds number, each periodic convection cell houses a
double spiralling-in saddle focus in its centre, a spiralling-out saddle focus on each
of the two cell boundaries and two types of saddle limit cycle on the walls. A
representative analysis for Re = 500 shows chaotic streamlines to be due to chaotic
tangling of the two-dimensional stable manifold of the central spiralling-in saddle
focus and the two-dimensional unstable manifold of the central wall limit cycle.
Embedded Kolmogorov—Arnold—Moser tori and the associated closed streamlines are
computed for several supercritical Reynolds numbers owing to their importance for
particle transport.

Key words: chaotic advection, nonlinear dynamical systems, topological fluid dynamics

1. Introduction

The flow of an incompressible Newtonian fluid in a lid-driven cavity is a classical
problem in fluid mechanics, first pioneered analytically and numerically by Burggraf
(1966). The system is also an important model for environmental and industrial flows
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(Freitas & Street 1988; Iwatsu et al. 1989; Shankar & Deshpande 2000). Cavity flows
have been considered in chemical engineering (Aidun, Triantafillopoulos & Benson
1991; Benjamin, Anderson & Scriven 1995) and to model condensation dryers
(Alleborn, Raszillier & Durst 1999), polymer melts and coating processes (Gaskell
et al. 1996, 1998). Other applications relate to metal casting and galvanization.
The related problem of compressible flow in a shear-driven cavity is of interest in
aeronautical applications if, e.g. airframe noise is to be reduced (see, e.g. Crighton
1991).

Owing to the simplicity of the geometry and boundary conditions the lid-driven
cavity problem is frequently employed as a numerical benchmark (Ghia, Ghia &
Shin 1982; Schreiber & Keller 1983; Albensoeder & Kuhlmann 2005; Bruneau &
Saad 2006). It is also interesting for fundamental fluid mechanics, since this type
of separated flow exhibits a rich variety of characteristics such as the evolution of
a vortex core to solid-body rotation at high Reynolds number in two-dimensional
flow (Batchelor 1956) or viscous corner eddies (Moffatt 1964). Other interesting
features are the multiplicity of steady two-dimensional flows (Albensoeder, Kuhlmann
& Rath 2001a) and a wealth of different hydrodynamic instabilities (Albensoeder &
Kuhlmann 2003) ranging from centrifugal (Ramanan & Homsy 1994; Albensoeder,
Kuhlmann & Rath 20010) to elliptic mechanisms (Albensoeder & Kuhlmann 2002).
As a result the lid-driven cavity has evolved to a paradigm for vortex flows in
confined geometries. A review covering many of these aspects is due to Shankar &
Deshpande (2000).

The present investigation is concerned with the streamline topology in a rectangular
cavity in which the flow is driven by the steady anti-parallel motion of two facing
walls. The streamline topology in a similar cavity has been considered before in
the context of mixing at low Reynolds number and under time-dependent forcing
(see e.g. Ottino 1989). Here, we investigate the existence, properties and evolution
of three-dimensional steady flow structures at much larger Reynolds numbers. Of
interest is the organization of the flow around the singular points which change in
number and character when the Reynolds number increases and the flow becomes
three-dimensional. The structure of the regions of regular and chaotic streamlines is
not only important for mixing, but also plays a crucial role for the transport and
accumulation of finite-size suspended particles (Hofmann & Kuhlmann 2011; Mukin
& Kuhlmann 2013; Muldoon & Kuhlmann 2016).

The theoretical backbone of chaotic mixing is the local Hamiltonian structure of
incompressible three-dimensional solutions of the Navier—Stokes equations. As shown
by Bajer (1994), the classical theory and analysis tools developed for Hamiltonian
systems can be extended to three-dimensional steady fluid flows when interpreting
these locally as Hamiltonian systems with 1.5 degrees of freedom. As pointed out by
Aref (1984) and Aref (1990) the theory of chaotic advection based on this analogy
is of considerable importance for the understanding of the fluid dynamics, mixing
and de-mixing and corresponding applications, even in laminar flows and for very
low Reynolds numbers (see e.g. Ottino 1989, 1990; Boyland, Aref & Stremler 2000;
Ottino & Khakhar 2000).

Initial studies on streamline topology focusing on mixing were carried out for
low Reynolds number flow in two-dimensional configurations in which the forcing
was time dependent. Chien, Rising & Ottino (1986) and Leong & Ottino (1989)
experimentally investigated the two=dimensional Stokes flow (Re = O(1)) in a cavity
driven by two facing lids which' move according to a certain temporal protocol
including continuous' and discontinuous motion. A rich behaviour in terms of periodic
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points and regular islands was found. They experimentally demonstrated that chaotic
mixing can be achieved in boundary-driven Stokes flows via time-periodic driving.
Their studies were extended numerically by Anderson et al. (2000) who included the
effect of inertia (Re =50) on the mixing process in two-dimensional Navier—Stokes
flows driven by a superposition of a constant and a time-harmonic forcing. They
have shown that, even though regular and chaotic regions of the flow do not mix, the
presence of Kolmogorov—Arnold—Moser tori might be used to enhance the effective
mixing of the flow. Hwang, Anderson & Hulsen (2005) and Pai, Prakash & Patnaik
(2013) numerically investigated the effect of freely suspended particles and passive
inserts on chaotic mixing in two-dimensional Stokes flow inside a lid-driven square
cavity, while Xu & Gilchrist (2010) studied the mixing efficiency of particles in
the presence of shear-induced particle migration. An important achievement of these
investigations consists of showing protocols for an efficient mixing of fluids at small
scales do not well perform for suspensions.

Since a Lagrangian description of three-dimensional steady incompressible Navier—
Stokes flows is computationally very expensive, most numerical investigations of the
topology of Navier—Stokes flows have been concerned with linear or nonlinear
time-dependent two-dimensional flows for which a marching technique can be
employed. Oteski er al. (2015) and Contreras, de la Cruz & Ramos (2016) were
concerned with differentially heated cavity flows. In a two-dimensional set-up Oteski
et al. (2015) identified a route to chaos which brings the flow from steadiness
to hyperchaotic states as the Rayleigh number increases. They interpreted such a
scenario as a frequency locking mechanism, typical of Arnold tongues. Contreras
et al. (2016) focused on a Stokesian flow in a three-dimensional cubic container
with time-dependent boundary conditions. They demonstrated the existence of
invariant surfaces with spheroidal character and classified the dynamics on these
invariant surfaces which shows a behaviour similar to bifurcations of fixed points
of area-preserving maps. Other work has dealt with closed-form solutions of the
Navier—Stokes or Euler equations such as the ABC flow (see, e.g. Dombre et al.
1986; Haller 2001) or with Stokes flow for which the superposition principle can
be employed. Kroujiline & Stone (1999), for instance, numerically and analytically
investigated the onset of chaotic motion in Stokes flow in a spherical drop due to
perturbations of axisymmetry. They used area-preserving whisker maps to estimate
the width of the chaotic layer which was found to form about the separatrix of the
unperturbed flow. Arter (1983) considered bimodal convection in the Rayleigh-Bénard
problem slightly above the convective threshold. He demonstrated that the presence
of higher-order terms in an expansion of the weakly nonlinear flow causes chaotic
streamlines to invade the region of regular motion from the boundaries of the
convection cells (see also Chernikov & Schmidt 1992). For another paradigmatic
system, the Taylor—Couette problem, a similar behaviour was found by Broomhead
& Ryrie (1988) within an analytical model for wavy Taylor vortices. Upon the onset
of waviness chaotic layers are established around the separatrices between the Taylor
vortices. The reason for this behaviour is the breakup of the heteroclinic connection of
two hyperbolic points on the cylindrical walls which are connected by the separating
streamline in the unperturbed axisymmetric steady flow. Rudman (1998) numerically
investigated particle dispersion in wavy Taylor—Couette flow, confirming the results of
Broomhead & Ryrie (1988). They found, moreover, that the structure of the particle
dispersion strongly depends on the: flow state with the possibility of heavy particles
being trapped in the vortex cores. The gradual invasion of the chaotic region from
the boundaries seems to be a generic feature when a two-dimensional flow becomes
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time dependent or three-dimensional. According to Biemond et al. (2008) heteroclinic
orbits which exist in two-dimensional steady flow break into heteroclinic tangles upon
the onset of time dependence. Since these heteroclinic connections frequently involve
separation and/or reattachment points, the flow becomes ergodic from the boundaries.

There are only very few investigations of the streamline topology of fully
three-dimensional steady or time-dependent Navier—Stokes flows. Ishii, Ota & Adachi
(2012) were among the first to numerically demonstrate Lagrangian transport in the
three-dimensional steady flow in single-lid-driven cavities for different aspect ratios
(see also Ishii & Iwatsu 1990; Ishii & Adachi 2006). For Reynolds numbers in the
range Re € [100, 400] different Kolmogorov—Arnold—-Moser (KAM) tori embedded
in a chaotic flow have been identified. Mukin & Kuhlmann (2013) considered
a three-dimensional hydrothermal wave in a liquid bridge which is driven by
thermocapillary surface stresses. In this type of flow certain KAM tori can be
extremely compressed towards the free surface, a topological property which was
shown to have a profound influence on the transport and de-mixing of suspended
particles. Sotiropoulos, Ventikos & Lackey (2001) have identified a mechanism
causing chaotic transport in steady three-dimensional vortex-breakdown bubbles
computed numerically (Sotiropoulos & Ventikos 2001). The appearance of chaotic
regions was traced back to Shilnikov’s mechanism (Shilnikov 1965) which relies
on a homoclinic orbit of an inward-spiralling saddle focus. Exponentially small
three-dimensional perturbations, present in every experiment, of the vortex-breakdown
bubble can trigger chaotic streamlines. As a result chaotic streamlines gradually
invade the bulk of the breakdown bubble from the perturbed surface of separation.

In the present paper we investigate the laminar, incompressible flow in a cavity
driven by two facing side walls which move steadily in opposite directions and
which is periodically extended in the third (spanwise) dimension. The system has
received considerable attention (see e.g. Tiwari & Das 2007) and it exhibits different
three-dimensional flow instabilities (see, e.g. Kuhlmann, Wanschura & Rath 1997;
Albensoeder & Kuhlmann 2002; Blohm & Kuhlmann 2002). For a separation
of the moving walls which is I = 1.7 times the height of the cavity the basic
two-dimensional flow exhibits three singular points, one hyperbolic and two elliptic
ones, defining a cat’s-eye flow. We are interested in the evolution of these fixed
points as the Reynolds number is increased beyond the onset of three-dimensional
flow which arises in form of steady periodic prismatic cells (Albensoeder et al.
2001b6) due to an elliptic instability mechanism (Bayly 1986; Pierrehumbert 1986;
Waleffe 1990). The singular points are expected to have a significant effect on the
organization of chaos in the system as a function of the Reynolds number. The
detailed streamline topology is of interest and decisive importance for the transport
of suspended particles and, in particular, for a rapid accumulation mechanism which
has only been observed recently (Kuhlmann et al. 2016) and which depends on the
particle size. With this motivation in mind and based on accurate numerical solutions
of the Navier—Stokes equations the cellular flow is investigated with respect to its
topological properties including singular points and regular versus chaotic motion.

Section 2 presents the mathematical formulation of the problem under investigation.
In §3 the numerical method employed to simulate the three-dimensional flow is
discussed along with the algorithm to compute the streamlines. Results are presented
and discussed in §4. Section 5 is dedicated to a discussion and conclusions.

2. Problem formulation

A closed cavity of rectangular cross-section occupied by an incompressible
Newtonian fluid of| constant density p and kinematic viscosity v is considered.
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FIGURE 1. Sketch of the two-sided anti-parallel lid-driven cavity. The coordinate origin
O is located in the cavity centre (dot). The cavity width I" and the period A are given in
units of the cavity height H.

The geometry in the (x, y)-plane is defined by the height H in y-direction and
the width D in x-direction. In the z-direction the cavity is assumed to be infinitely
extended. The flow is driven by two facing parallel side walls at x = =D/2 which
move with constant velocity U in opposite y-directions.
Following Albensoeder & Kuhlmann (2002) the viscous scaling
v H? pv?

i=u—, X=xH, t=1t—, p=p— 2.1a—d
I L P=Pp ( )
is adopted, where u and p are the velocity and pressure fields, respectively, x = (x, y, z)
and ¢ are spatial and temporal coordinates and the caret (") represents dimensional

quantities. The non-dimensional Navier—Stokes equations are

@, +u-Vu=—-Vp+ Viu, (2.2a)
V.u=0. (2.2b)

The mathematical problem is closed by no-penetration and no-slip boundary conditions
along the walls and by assuming periodic boundary conditions in z-direction with
period A

u(y==+1/2)=0, u(x==+I/2)=FRee,, u(z=21/2)=uz=-21/2), (2.3a—c)

where
UH D
Re=— and I =— (2.4a,b)
v H

are the Reynolds number and the cross-sectional aspect ratio, respectively (figure 1).

For the present investigation we consider the aspect ratio I" = 1.7. The period in
z-direction is selected to be the critical wavelength A = A, = 2.73; for the critical
curves Rex (M) and Aa(L)=2mw/k.(I") the reader is referred to Albensoeder &
Kuhlmann (2002). The aspect ratio is selected, because the critical Reynolds number
Re. = 211.53 is relatively  small and close to its minimum at I" = 1.428, yet the
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flow at criticality exhibits the strain-dominated cat’s-eye flow structure, a condition
which arises in the interval I" € [1.58, 2.066] (Albensoeder & Kuhlmann 2002). Since
the critical mode does not change in this range of I, results obtained for I = 1.7
can be considered representative for the full range I" € [1.58, 2.066]. Similarly, the
wavelength 1 = A, can be considered representative, because the wavelength A, is
typically located approximately in the centre of the band of Eckhaus-stable periodic
solutions; see e.g. Dominguez-Lerma, Cannell & Ahlers (1986), Riecke & Paap
(1986) for Taylor vortex flow and Albensoeder & Kuhlmann (2006) for lid-driven
cavity flow. Moreover, with A = A. the full range of finite-amplitude periodic flows
can be covered from Re. to the Reynolds number at which the flow becomes time
dependent.

In the following, steady cellular flows are computed for different Reynolds numbers
and they are analysed with respect to their Lagrangian properties.

3. Numerical methods
3.1. Fluid flow

Numerical simulations are carried out using a spectral method based on collocation
(see, e.g. Canuto et al. 1988; Botella & Peyret 2001; Peyret 2013). In order to avoid
parasite pressures of numerical origin the functional spaces to represent the discrete
pressure and velocity are chosen according to the Py—Py_, method.

In x- and y-directions Chebyshev—Gauss—Lobatto points are employed, whereas
Fourier modes are used in z-direction which automatically guarantees a correct
implementation of the periodic boundary conditions. The time discretization is
accomplished by the second-order Adam-Bashforth backward Euler scheme, as in
Botella (1998). The algorithm consists of a prediction step solving for an intermediate
flow field u, followed by a projection onto an algebraically solenoidal velocity space

3l_ln+1 o 4un + un—]

— Vi 4 Vp 42w Vu —u" Ve =0, (3.1a)

2At
u gy =g, (3.1b)
3 un-H _ l_ln+1
S tY@rt = =0, @.1)
V.ut =0, (3.1d)
Wt onlyy =g o, (3.1e)

where |,y denotes the boundary of the domain V, g is the prescribed boundary
velocity according to (2.3), the superscript n refers to the time step and the overbar
(7) indicates the intermediate solution of each complete projection step. Only the
first time step is reduced to first order by setting u~' =u°, p® =0 and by replacing
At with 3At/2. The Uzawa method (Peyret 2013) is applied to (3.1¢)—(3.1e) and
the method of Phillips & Roberts (1993) is adopted to filter the singularity in the
pressure owing to the absence of boundary conditions for p.

Following Botella & Peyret (1998) and Albensoeder & Kuhlmann (2005) the
strength of the singularity at each of the four cross-sectional corners (edges in
threepdimensions)wispsignificantlysreduced by employing the second-order asymptotic
solution for a single infinite wedge. Subtracting from the velocity and pressure fields
a superposition of the four asymptotic solutions (suitably weighted not to induce
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additional singularities) the numerical error is reduced to O(N—°), where N is the
number of modes per spatial direction used in the discretization.

All simulations are conducted with N =128 modes in each space direction. Further
details about the spectral method and the corner singularities were presented in
Albensoeder & Kuhlmann (2005), where the verification and accuracy of the flow
solver are thoroughly discussed. The simulations are continued from the initial
conditions until a steady state was reached. The flow was considered a sufficiently
accurate approximation to the steady state after the termination criterion (as in
Albensoeder & Kuhlmann 2006)

|M,‘(x, t) - ui(x’ r— At)l
x,i At|Re|

N

1077 (3.2)
was satisfied.

3.2. Streamlines

To study the topology of the three-dimensional cellular flow and its properties a
Lagrangian representation of the fluid kinematics is employed. With X denoting the
position of an infinitesimal fluid element with initial condition X, = X (¢ = 0), its
motion is governed by
x_ X) (3.3)
& =u(X). .

Two main approximations are made in calculating the trajectory of a fluid element,
i.e. its streamline. The first approximation consists in integrating (3.3) numerically.
A Runge—Kutta Dormand-Prince method is employed (for details, see Dormand &
Prince 1980). The method is explicit and computes fourth- and fifth-order solutions,
estimates the error by the difference between both solutions, and carries on with the
integration using the fifth-order solution. An adaptive time step Ar is employed such
that the estimated absolute and relative errors are always less than 10710,

The second approximation in solving (3.3) is introduced by changing from an
Eulerian frame of reference for computing the flow field to a Lagrangian frame
of reference to compute the motion of a fluid element. To pass from the former
(with a discrete spatial representation of the solution) to the latter continuous space
variables are introduced which requires an interpolation of the flow field u in space
to solve (3.3) by integration in time. The reader is referred to § A.1 for a detailed
discussion of the interpolation and the error introduced by this approximation. All the
results presented below are obtained using a spectral interpolation. The only exception
concerns the calculation of Poincaré points belonging to the chaotic sea, which are
computed employing a tri-linear interpolation for computational economy. For the
computation of trajectories which depend very sensitively on the initial conditions a
higher accuracy is obtained by using the algorithm proposed by Berrut & Trefethen
(2004).

4. Results
4.1. Symmetries and fixed points for slightly supercritical flow

Owing torthe boundary conditions|a basic flow exists which is point symmetric in
the (x, y)-plane and translational invariant in z. For aspect ratios I < 1.58 the basic
flow at the critical threshold arises as a vortex with elliptic streamlines at the centre
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e h e h
Al A, Vo Vo

+100.42611i 80.9995  (0.9167, —0.2628 +0.3010i, 0)  (0.9993, —0.0386, 0)*
—100.4261i  —80.9995 (0.9167, —0.2628 — 0.3010i, 0)T  (0.8687, —0.4953, 0)T

TABLE 1. Figenvalues and normalized eigenvectors of the velocity gradient tensor
at criticality, Re = 211.53, evaluated at the elliptic point e located at (x¢, y°) =
(0.3252, —0.0955) and at the hyperbolic point & located at (x*, y*) = (0, 0) of the basic
flow.

(x,¥) = (0, 0) of the cavity for which the strain rate is less than the rate of rotation
(Albensoeder & Kuhlmann 2002). For the present aspect ratio I' = 1.7 > 1.58 the
strain rate in the centre is slightly larger than the rate of rotation such that the centre
is a hyperbolic point h, surrounded by two elliptic points e;, forming a cat’s-eyes
flow pattern (see figure 2a). The eigenvalues and eigenvectors of the two-dimensional
velocity gradient tensor evaluated at both types of the fixed points are given in table 1
for Re = Re. =211.53. Streamlines of the neutrally stable flow at Re = Re. are shown
in figure 2(a). The three fixed points of the two-dimensional flow in the (x, y)-plane
(for which u =0) extend in the third (z) dimension in form of periodic lines.

Above the critical Reynolds number the translational invariance in z is broken
by a critical mode in form of steady convection cells periodic in z, one period
comprising of two cells (Albensoeder & Kuhlmann 2002; Blohm & Kuhlmann 2002).
The flow field of the critical mode is point symmetric with respect to the centres
x.= (0,0, £n1/2), ne€ Ny, of each convection cell, where the origin of the coordinate
system is defined in the centre of the cell n = 0. Furthermore, the critical mode
exhibits mirror-symmetry planes at z, = £(1 +2n)4/4 on which the spanwise velocity
w vanishes. We find these point and mirror symmetries are preserved in the full
finite-amplitude supercritical flow.

Due to the breaking of the translational invariance in z the periodic lines of the fixed
points for the two-dimensional flow are destroyed for Re > Re.. Only four types of
discrete fixed points survive (the three of those placed on the cell boundary are shown
in figure 3b). The hyperbolic points in the cell centres and on the cell boundaries
preserve their hyperbolic character only for a very small range of slightly supercritical
Reynolds numbers. Due to the symmetry of the flow the fixed point in the cell centre
does not move with Re. The fixed points e;, on the periodic lines at Re = Re, vanish
for any Re > Re., except on the cell boundaries. Only on these mirror-symmetry planes
the two elliptic points smoothly transform into two weak saddle foci, one spiralling
inward (s") and the other spiralling outward (s;). These four fixed points per each cell
undergo further changes in a very small range of supercritical Reynolds numbers.

The time scale for the evolution of the flow diverges at the critical point (critical
slowing down) and makes numerical simulations increasingly expensive. Therefore, we
approximate the slightly supercritical flow by

u"™ =uy + av/Re — Re.i, 4.1)

where u, is the basic flow at criticality and # the critical mode obtained by a
linear stability analysis (Albensoeder & Kuhlmann 2002). In this case the critical
perturbationfield iz visvcomputedrusing 48 spectral modes. From a fit (figure 4)
of the amplitude of the numerically simulated nonlinear steady flow for the lowest
supercritical Reynolds numbers we determine the slope factor a = 5.6443 when
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FIGURE 2. (a) Streamlines of the basic flow at criticality for Re =Re. =211.53 exhibiting
the cat’s-eye structure. The markers indicate the position of the hyperbolic and the two
elliptic points. (b) Streamlines in the cell boundary at z=—A/4 for slightly supercritical
driving approximated by (4.1) for Re = 1.010 x Re. = 213.7 before the merging of two
fixed points (full line) and for Re =1.0127 x Rec =214.2 after the merging (dashed line).
Both streamlines spiral out of the right fixed point. The dashed streamline approaches
the solid boundary, whereas the full streamline is spiralling into the left fixed point. The
elliptic points e ,, the hyperbolic point & and the saddle foci s* and s, which originate
from the elliptic points are labelled in the figure.

normalizing the critical mode by its maximum velocity modulus. To assess the
character of the fixed point in the cell centre, denoted ¢, the eigenvalues of the
velocity gradient tensor were calculated using (4.1). Only within a very small range
of supercritical driving the fixed point ¢ remains hyperbolic with three real eigenvalues
(one positive and two being negative). Already at € = (Re — Re.)/Re. = 0.0028 the
fixed point ¢ changes from hyperbolic to an inward-spiralling saddle focus. This
behaviour indicates an extreme sensitivity of the cat’s-eye flow structure with respect
to three-dimensional perturbations.

To investigate the behaviour of the other fixed points we computed streamlines of
(4.1) on the cell boundary at z = —A/4 on which w = 0. Upon the onset of the
three=dimensionalrflownthentworelliptic points change to an inward- and an outward-
spiralling saddle focus. As the Reynolds number increases the inward-spiralling saddle
focus, corresponding to a sink in the plane, merges with the hyperbolic point such
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) w) (o)

X

FIGURE 3. Sketch of the evolution of the fixed points and the streamline structure near
a cell boundary (quadrangle) as the Reynolds number is increased from the critical value
Re =Re. (a) to Re=1.01 x Re. (b) and Re = 1.0127 x Re. (c). The markers show the
position of elliptic points e;, (), the hyperbolic point & (O) and the saddle foci s’ and
s, (@) which originate from the elliptic points. At € =0.0127 (c) the fixed points A and s’
have merged and vanished. The fixed point ¢ in the cell centre is not shown. For Re > Re,
the perimeters of the cell boundaries are degenerate saddle limit cycles w;,, the small
arrows indicate the direction of attraction/repulsion (see 4.2).

60 -

20

0 L L M
210 220 230 240
Re

FIGURE 4. Squared amplitude of w(x*, y*, z) along the ray (x*,y*) =(—0.400687, 0) made
by a grid line as a function of the Reynolds number.

that only the outward-spiralling saddle focus remains. We could bracket the merging
point to € € [0.010, 0.0127]. Streamlines on the cell boundary before and after the
merging are shown in figure 2(b). The unfolding for the corresponding merger in
two-dimensional incompressible flow of an elliptic with a hyperbolic point has been
treated by Brgns & Hartnack (1999).

4.2. Reynolds number dependence of the fixed points

A representative example for the nonlinear supercritical flow field within one cell
is provided in figure 5 for Re = 500. Projections of the velocity vectors are shown
in the planes z = —4/4 (a), z=0 (b) and y = 0 (c¢). This type of cellular flow,
exhibitingrthensamensymmetriesjiexists for a range of aspect ratios and has been
investigated experimentally by Blohm & Kuhlmann (2002) for I" = 1.96. They found
time dependence to set in at Re~ 825 . .. 880, depending on the wavelength A.
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FIGURE 5. Projections of the velocity vector field for I" =1.7 and Re =500 in the planes
(z=—-4/4) (a), (z=0) (b) and (y =0) (c¢). For better visualization the vectors in (a)
and (b) have been magnified by a factor of 1.5 with respect to those shown in (c).

We consider the cell » = 0 extending from z = —zy = —1/4 = —0.6825 to

4 = (.68 ncegthesphase of the cellular pattern was not enforced in the
ndaries z, are accurate only up to five decimal
e focus ¢ in the cell centre and the spiralling-out
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FIGURE 6. Streamlines on the cell boundary at z = —A/4 spiralling out from the fixed
point s, for Re =240 (dotted line), Re = 400 (solid line), Re = 500 (dashed line) and
Re =700 (dashed-dotted line). The left boundary at x = —1I"/2 moves upward while the
right boundary at x =1I"/2 moves downward.

Re xvort yvart X2 ysz

215 0.1288 0.0532 0.38486 —0.0872
220 0.1968 0.0797 0.42187 —0.0699
240 0.3429 0.1501 0.51758 —0.0528
275 0.4823 0.1661 0.60706 —0.0638
300 0.5740 0.1947 0.63670 —0.0645
400 0.7035 0.1778 0.69041 —0.0251
500 0.7139 0.1577 0.70915 0.0507
700 0.6857 0.1863 0.70223 0.1659

TABLE 2. Coordinates of the fixed point x*2 on the cell boundary at z = —A/4 and
intersection point x'”" with the cell boundary at z = —1/4 of the vortex line passing
through the central fixed point c. The corresponding points on the opposite cell boundary
are located anti-symmetrically.

saddle foci on each of the two cell boundaries, denoted s, ,, are established they are
robust features of the steady flow for all Reynolds numbers Re > 215 investigated.
To find the saddle focus s, on the cell boundary at z = —zg = —A/4 = —0.6825 a
fluid element is initialized at x = (—0.845, 0, —4/4) and its trajectory is integrated
backward in time, enforcing w = 0, until the spiralling motion converges to s,,
accurate to five decimal places. Figure 6 shows the resulting streamlines on the cell
boundary for different Reynolds numbers (indicated by line types). Upon an increase
of the Reynolds number the fixed point s, moves towards the nearest moving wall (at
x =1"/2) before turning to the direction of the corner upstream of the moving wall.
The coordinates of the spiralling-out saddle focus s, are given in table 2 as function
of the Reynolds number.

To characterize the fixed points ¢ and s, the eigenvalues and eigenvectors of the
velocity gradient tensor” Vuwere calculated. They are tabulated in tables 3 and 4,
respectively. The sum of the eigenvalues is zero, as required for an incompressible
flow. Since the eigenvalues arise as a complex conjugate pair and a single real and
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Re Al A A7, A3

215 —=37.210+£21.351  74.541 9.2565 £110.5821  —18.5131
220 —33.326£62.381  66.652 14.0702 £ 108.424i —28.1404
240 —23.957+£138.171 47914 27.5823 £ 105.694i —55.1646
275 —15.227+£202.151 30455 54.3772+£131.232i —108.7545
300 —11.249+£228.131 22.498 61.4271 £145.4041 —122.8542
400 —7.416+293.831 14.832 74.3162+193.0741 —148.6324
500 —11.528+367.861 23.560 79.0853 +288.3681 —158.1706
700 —14.487+544.691 28.974 71.8950+429.1391 —143.7900

TABLE 3. Eigenvalues of the velocity gradient tensor at the stagnation points ¢ and s,
in the cell centre and on the cell boundary, respectively.

Re v‘l'ﬁ2 U

215 (—0.5681 % 0.2739i, 0.2928 4+ 0.1600i, —0.7007)T  (0.9789, —0.0483, —0.1985)"
220 (—0.4217 £+ 0.4858i, 0.1786 £ 0.3009i, —0.6809)T  (0.9407, —0.0501, —0.3355)"
240 (—0.4126 % 0.4686i, 0.1058 & 0.4035i, —0.6604)T  (0.8172, —0.0151, —0.5760)
275 (—0.4643 4+0.3302i, 0.1157 +0.4657i, —0.6671)T (0.7399, 0.0175, —0.6724)T

300 (—0.4897 £ 0.2484i, 0.1340 4 0.4808i, —0.6704)T (0.7145, 0.0228, —0.6993)T

400 (—0.5458 £0.0151i, 0.2049 + 0.4705i, —0.6623)T  (0.6538, —0.0122, —0.7566)"
500 (—0.5559 4 0.1004i, 0.2460 + 0.4516i, —0.6454)T  (0.6349, —0.0786, —0.7686)"
700 (—0.4995 4+ 0.1051i, 0.2300 £+ 0.4708i, —0.6818)T  (0.7319, —0.1682, —0.6603)T

Re vy, vy

215 (—0.8809, 0.2671 4 0.3908i, 0.0000)" (0.00, 0.000, 1.000)T
220 (—0.8582, 0.2588 + 0.4432i, 0.0000)" (0.00, 0.000, 1.000)T
240 (—0.7668, 0.2603 + 0.5868i, 0.0000)" (0.00, 0.000, 1.000)T
275 (—0.1191 £ 0.5067i, 0.8538, 0.0000)" (0.00, 0.000, 1.000)T
300 (—0.0639 + 0.4409i, 0.8953, 0.0000)" (0.00, 0.000, 1.000)T
400 (—0.0151 £ 0.2580i, 0.9660, 0.0000)" (0.00, 0.000, 1.000)T
500 (—0.0395 £ 0.2716i, 0.9616, 0.0000)" (0.00, 0.000, 1.000)T
700 (—0.1066 = 0.4204i, 0.9011, 0.0000)" (0.00, 0.000, 1.000)T

TABLE 4. Normalized eigenvectors of the velocity gradient tensor at the stagnation
points ¢ and s, in the cell centre and on the cell boundary, respectively.

positive eigenvalue for all Reynolds numbers investigated, the central stagnation
point is a saddle focus which spirals inward. From the normalized eigenvectors v
it can be seen that the straining is approximately in x-direction for the smallest
Reynolds number Re =215. As the Reynolds number increases the straining direction
approximately turns to the diagonal in the (x, z)-plane with y~ 0.

The evolution of the character of the two kinds of fixed points in the two-
dimensional subspace spanned by the two complex conjugate eigenvectors e; and
e, is shown in figure 7 by displaying det(A4) =Re?*(1) 4+ Im*(1) and tr(A) = 2Re(1) as
functions of the Reynolds number, where A is the projection of the strain rate tensor
onto the plane (e;, e;). The inward-spiralling saddle focus in the cell centre evolves
from the hyperbolic point of the basic state. The saddle focus comes into existence
slightly above the thresholdrat'e=10.0028. The character of the saddle focus upon its
creation and in linear approximation according to (4.1) is shown as a black dot in
figure 7. It is consistent with the trend of the character obtained from the nonlinear
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FIGURE 7. Determinant and trace of the velocity gradient tensor projected onto the
subspace spanned by the two complex conjugate eigenvectors (e, e;) of the fixed points.
The solid line indicates det(A) = tr(A)?/4. Circles and squares relate to the saddle foci ¢
and s,, respectively. The Reynolds number are 215, 220, 240, 275, 300, 400, 500 and 700
(some are indicated by labels). The full square indicates the elliptic point of the neutrally
stable basic state and the dot represents the slightly supercritical onset point of the central
saddle focus approximated by (4.1).

solutions (circles): The reduction of the trace as Re increases indicates a tendency
towards solid-body rotation in the cell centre. The outward-spiralling saddle focus on
the cell boundary (squares in in figure 7) evolves from one of the elliptic points at
criticality. It thus experiences the opposite trend: the strain in the subspace considered,
and thus tr(A), increases rapidly with Reynolds number, but does not change much
anymore beyond Re ~ 400.

4.3. Relation between fixed points and limit cycles

To further characterize the flow topology we focus on the representative case of
Re = 500. In addition to the fixed points degenerate saddle limit cycles exist. We
find two types of limit cycles on the walls. One type, denoted w,,, is made by the
rectangles given by the intersection of each cell boundary with the walls. These wall
limit cycles are saddle limit cycles which are attracting along the cell boundary (see
figure 6) and repelling in the immediate vicinity of the walls.

The two unstable manifolds of w; and w, meets on the walls midway between both
cell boundaries and represent the stable manifolds of another, non-trivial, degenerate
saddle limit cycle w.. To find it we consider the streamline pattern on the walls.
The streamlines on the moving walls are straight and prescribed by the boundary
conditions. Approximations to the streamlines on the stationary walls at y=40.5 were
obtained by integrating the velocity field restricted to the planes y==+0.5F1.5x 107*
and imposing v =0. The distance from the wall corresponds to the locus of the first
collocation point. The result is shown in figure 8(a). This approximation to the wall
streamlines isvin qualitative agreement with the deposition pattern of fine particles
(figure 85) which was observed experimentally by Blohm (2001) for I" = 1.96.
Streamlines on the moving walls with| velocity |u| = Re are topologically connected
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FIGURE 8. (Colour online) (a) Wall streamlines on the bottom of the cavity at y=—1/2
(grey) and projection of the closed streamline w, on the wall (blue) for Re =500. Shown
are the segments of the closed streamline on the bottom wall at y=—0.5 (full blue line)
and on the top wall at y=0.5 (dashed blue line). (b) Photograph of the deposition pattern
of tiny particles on the solid wall of an anti-symmetrically driven cavity with I" =1.96
having been operated at Re = 700 for a long period of time (from Blohm 2001). The
visible lines can be interpreted as skin-friction lines.

N
f

We w2

FIGURE 9. (Colour online) Sketch of the major topological elements for supercritical
conditions with Re > 215 > Re.. The central saddle focus (blue square) and the saddle
limit cycle on the wall (blue) are denoted ¢ and w,, respectively, while the saddle foci on
the cell boundaries (red dots) are indicated by s; and s, with corresponding saddle limit
cycles wy, (red). The grey rectangle in the background symbolizes the upward moving
wall.

with the streamlines on the stationary walls with velocity |#|=0. The motion on the
four walls is thus degenerate in the sense that the velocity on the walls is stepwise
constant with magnitude Re or zero.

To find w, the fixed point of an iterative map was calculated using the start and end
points of the computed streamlines on the stationary walls. The iterative map confirms
the attraction of the saddle limit cycle w,. in the immediate vicinity of the wall and
the repulsionintorthe fluid:>The saddle limit cycle w. is shown in blue in figure 8(a).

A sketch of all saddle foci and limit cycles is provided in figure 9. The direction
of the two-dimensional unstable manifold of the central saddle limit cycle w. (blue)
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FIGURE 10. (a) Three-dimensional visualization of the stable (red) and unstable (solid
black line) manifolds of the central saddle focus ¢ (black dot) for Re = 500. The stable
manifold of s, (cyan dot) is shown in cyan. The dotted line represents the vortex line
through c; it ends orthogonally on the cell boundary (circle). (b,c) Show the intersection
of the stable manifold of ¢ with x=0 (b) and y=0 (c) as well as the projection to these
planes of the lines shown in (a).

varies along the limit cycle, the arrows normal to w. and normal to the wall in figure 9
are meant only symbolically.

For the advection organized by the saddle foci and saddle limit cycles it is useful
to identify their stable and unstable manifolds and inquire about possible connections.
The two-dimensional unstable manifolds of the saddle foci s;, on the cell boundaries
are made by the plane cell boundaries. They continue, via the rectangular wall limit
i irecti t the central wall limit cycle w.. Figure 10(a)
stable two-dimensional manifold of the central
1e-dimensional unstable manifolds (black line)
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for Re =500. In addition, the one-dimensional stable manifold of s, is shown in cyan.
Clearly, the one-dimensional manifolds of ¢ are distinct from those of s; and s, and
thus are not directly connected with each other. In particular, the unstable manifolds of
¢ do not end on the cell boundaries. This is consistent with the different evolution on
a variation of Re of the two kinds of saddle foci originating from the elliptic and the
hyperbolic points of the basic state at criticality. For a more quantitative representation
figure 10(b,c) shows the intersections of the stable two-dimensional manifold of ¢
(red line) with the planes x =0 (figure 10a) and y =0 (figure 10b). The projections
of the two one-dimensional unstable manifolds of the saddle focus ¢ are shown as
black lines and those of s; and s, are displayed in cyan. In addition, the vortex line
(dashed) which passes through ¢ is shown in figure 10 to illustrate the alignment of
the vorticity with the main strain direction in the nonlinear flow which is caused by
the elliptic instability of the basic flow in which strain and vorticity are orthogonal.
The intersections of the vortex line with the cell boundaries are distinct from the fixed
points (also see table 2).

Since the one-dimensional manifolds of ¢, s; and s, are not connected their further
evolution is of interest. To that end the two unstable manifolds of ¢ and the stable
manifold of s, have been computed forward and backward in time, respectively. The
results are shown in figures 11(a) and 11(b), respectively. We find all one-dimensional
manifolds (streamlines) to alternatingly spiral near the cell boundary and near the
stable two-dimensional manifold of c¢. During their evolution all streamlines approach
the central saddle limit cycle w, (blue in figure 11) very closely or eventually
terminate on the wall (before coming even closer to the wall limit cycle) signalling
the resolution limit for the near-wall motion. To illustrate this the last part of the
calculated streamline before termination is shown in cyan in figure 11(b).

4.4. Heteroclinic tangling

The close approach of all one-dimensional manifolds to the saddle limit cycle w.
signals its importance for the flow. This can be used to construct an approximation
to the unstable two-dimensional manifold of w.. To that end 1000 streamlines
were computed forward and backward in time which are initialized equidistantly
on a small circle about x. = (0, 0, 0) with radius 2 x 107* in the plane y = 0.
Figure 12 shows a Poincaré section of the streamlines on the plane y = 0. The
Poincaré points of the streamlines backward in time (red) approximate the stable
manifold of c¢. The streamlines forward in time are shown as small black dots.
Initially, the streamlines separate into two streamline bundles, each approximating
one of the two one-dimensional unstable manifolds of c. These streamline bundles
extend towards the upper left and the lower right corners of the figure each producing
indistinguishable Poincaré points, indicated by orange and magenta. The first Poincaré
point is labelled ‘1’. In the course of their evolution the point clouds in the Poincaré
plane resulting from the two streamline bundles become stretched. This effect becomes
visible only when the bundles return close to the saddle focus for the first time
(similar to figure 1la). For a better visibility of the early evolution the Poincaré
points of one streamline out of each bundle is shown by orange and magenta dots,
respectively, for the first 55 returns. After the second return to the cell boundaries
the computed streamlines pass the central wall limit cycle w, extremely closely and
the streamline bundles:become very much stretched. Due to the close approach to the
wall limit cycle w, the streamlines approximately lie on the unstable two-dimensional
manifold of the wall limit|cycle. From figure 12 this approximation of the unstable
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FIGURE 11. (a) Evolution of the two unstable manifolds of ¢ (magenta and orange solid
lines) for Re =500. (b) Stable manifold of s, obtained by integration backward in time.
The last part of the streamline, before ending (backward in time) on the boundary at x =
0.85, is shown in cyan. The blue full and dashed lines in (a,b) indicate the wall limit
cycle w,.

manifold of the wall limit cycle (black dots) intersects the stable manifold of the
central-saddle-focus transversely-insastangled fashion. We thus conjecture the existence
o-dimensional stable manifold of ¢ and the
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FIGURE 12. Transverse intersection in the Poincaré plane y =0 of the two-dimensional
stable manifold (red) of the central fixed point ¢ and the unstable two-dimensional
manifold (black dots) of the wall limit cycle w. approximated by 1000 streamlines
originating from the vicinity of the central saddle focus for Re = 500. The orange and
magenta dots represent the 55 first returns to the Poincaré plane for two representative
streamlines (out of 1000 initial conditions) which are initially moving close to the cell
boundary at z=0.6825 and z= —0.6825, respectively. The first return is labelled ‘1°. The
blue squares indicate the location of the closed wall limit cycle w. and the indigo dots
delineate the largest reconstructible KAM tori which are discussed in §4.5.

4.5. KAM tori and chaotic sea

The streamfunction of the basic two-dimensional flow can be interpreted as the
Hamiltonian of a one-degree-of-freedom conservative dynamical system in which all
fluid elements move on periodic orbits (Ottino 1989). For a three-dimensional steady
flow the streamlines are typically quasi-periodic (regular) in a subvolume of the
cell with chaotic streamlines coexisting in other parts of the domain. Based on the
analogy between incompressible fluid flow and Hamiltonian systems (Bajer 1994) we
denote the regions of regular motion as Kolmogorov—Arnold—Moser tori (KAM tori,
Guckenheimer & Holmes 1983). They are embedded in the so-called sea of chaotic
streamlines. If the Reynolds number is increased beyond it critical value the chaotic
sea typically grows from the boundaries of the domain and continuously replaces the
regular regions on a further increase of Re (Biemond et al. 2008).

The present system, however, behaves differently. Even for slightly supercritical
conditions the whole volume is occupied by weakly chaotic streamlines. As the
Reynolds number increases the chaos becomes stronger, but KAM tori appear and
grow with Re until, for even higher Reynolds numbers, they start shrinking with Re.
Duentontheirssignificancesfornmixing (Ottino & Khakhar 2000), particle accumulation
(Mukin & Kuhlmann 2013; Muldoon & Kuhlmann 2013) and the transport in general
we aim at identifying the most prominent KAM tori as a function of the Reynolds
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FIGURE 13. (a) Poincaré section on x =0 for Re =240 of two streamlines for ¢t = 100
initialized at (x, y, z) = (0, 107, £107%). (b) Coordinates of a fluid element initialized
at (x,y,z)=(0,107%, 1072) as functions of time.

number for Re =240, 275, 300, 400, 500 and 700. Some technical detail are provided
in §A.2.

Figurewl3(@)mshowswawPoincarémsection at x = 0 for Re = 240, which is only
13 % above the critical Reynolds number Re. = 211.53. Obviously, all streamlines
computed are chaotic, covering the whole cross-section. This behaviour is in marked
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contradiction to what is expected from other systems like the Rayleigh—Bénard (Arter
1983) or the Taylor—Couette problem (Broomhead & Ryrie 1988) where most of the
volume is occupied by regular streamlines slightly supercritically. The type of chaotic
motion we find in the two-sided cavity is illustrated in figure 13(b) showing the
evolution of a single streamline initiated at =0 near x. at (x,y, z) = (0, 107, 1072).
Whenever the fluid element moves near x. it is rapidly transported to one of the
cell boundaries from where it slowly returns to the centre, describing an overturning
motion in the (x, y) plane. The nearly regular oscillations in the (x, y) plane are
interrupted whenever the streamline returns to the middle of the cell (z & 0) upon
which it spirals inward and approaches the central saddle focus c¢. Due to the high
sensitivity of the motion near the fixed point ¢, it distributes the streamlines in a
chaotic fashion resulting in a chaotic mixing within the whole periodic cell. The
motion is only weakly chaotic in the sense that long periods of a relatively regular
motion are interrupted by short excursions to the saddle focus c¢. The regular periods
have different durations and arise either for z> 0 or z <0 in an irregular fashion (see
e.g. t~3 and t~4.7 in figure 13b).

A similar behaviour as for Re = 240 is also observed for Re = 215 (not shown).
These results suggest that the flow becomes globally chaotic soon, if not immediately,
beyond the onset of three-dimensional flow with a duration of the more or less regular
bursts tending to infinity as the critical Reynolds number is approached from above.
Apparently, the observed sensitivity of the streamlines is caused by the existence
of the complex structure of saddle foci immediately above Re. which emerge from
the basic cat’s-eye flow. The details of the streamline chaos near the threshold is
complicated, however, by the structural changes of the fixed points in the flow which
arise in a very narrow Reynolds number range near Re. (see §4.1).

As the Reynolds number is increased to Re = 275 two slender regular regions
are born. They are demarcated by the two largest reconstructible KAM tori shown
in figure 14. Within each convection cell we find two KAM tori which are point
symmetric due to the symmetry of the flow. On a further increase of Re the KAM
tori grow larger and, for Re = 300, regular islands arise due to a 5:1 resonance
(figure 15). All KAM tori grow in size as the Reynolds number is increased further.
For Re =400 the tori of each of the two point-symmetrically located sets have merged.
The Poincaré section at x=0 and the KAM tori for Re =400 are shown in figure 16.
The resulting KAM tori consist of a single pair only of point-symmetrically placed
simply periodic tori.

For Re =500 a similar streamline topology is found (figure 17, see also figure 12
for a Poincaré section at y=0). However, the regular regions have shrunk in size. This
trend continues up to the largest Reynolds number considered, Re = 700. The KAM
tori for this Reynolds number are very slender with the chaotic sea occupying most
of the domain (figure 18). Each set of tori consists of a major simply periodic torus
(purple) and another doubly periodic torus (green) which is wound once about the
major torus. The winding is particularly strong (visible) near the walls at x = £0.85
where the vorticity is highest. The absence of secondary winding tori for Re = 500
indicates that a splitting of the purple KAM tori (2:1 resonance) must have taken
place at an intermediate Reynolds number.

As pointed out by Mukin & Kuhlmann (2013) and Muldoon & Kuhlmann (2013) an
important property of the regular structures of steady three-dimensional flows in closed
domains is thesminimum-distance 2\, of the closed streamlines from the boundaries.
Depending on Ay, finite size particles may be attracted to the regular regions by way
of particle_boundary interactions (Hofmann & Kuhlmann 2011). Moreover, Kuhlmann
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FIGURE 14. (Colour online) (a) Poincaré section on x = 0 for Re = 275. Grey points
indicate chaotic streamlines. The closed streamlines in the centre of the KAM tori (purple
dots) are marked by black diamonds (). (b) Three-dimensional representation of the
largest reconstructible KAM tori. The axes are not to scale.

et al. (2016) have provided strong evidence that A, can be used to guide particles
selection in order to observe particle accumulation structures experimentally. With this
perspective in mind the location of the KAM tori with respect to the boundaries is an
important property of the flow. We find the KAM tori for Re > 300 to always remain
more or less localized near the cavity walls and the periodic cell boundaries. Within
each set of nested KAM tori we find a single closed streamline. It is indicated by
diamonds () in the above Poincaré cuts. The closed streamlines are located by first
i i ifyi ipti d points of the Poincaré map. Thereafter, the

- the Poincaré plane are computed with an accuracy
o I\ i oh i i n.
- e
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FIGURE 15. (Colour online) (a) Poincaré section on x = 0 for Re = 300. Grey points
indicate chaotic streamlines. The closed streamlines at the centre of the KAM tori (purple
dots) are marked by black diamonds (). (b) Three-dimensional representation of the
largest reconstructible KAM tori. The axes are not to scale.

Figure 19(a,b) shows projections onto the (y, z)-plane of the closed streamlines
inside of the KAM tori. The projections onto the (x, z)-plane are shown in
figure 19(c,d), and three-dimensional views are depicted in figure 19(e,f). The
minimum distance of any closed streamline from the boundary always occurs near
the moving walls at x = 0.85. The numerical data for the minimum distance A,
are provided in table 5 together with the respective orbit times 7. For the closed
streamlines L and the largest KAM torus 77 identified we indicate with j the winding
i s and with i the turnover period. Since the regular
¢ pair, the fixed points on x = 0 for the closed
> 0.
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FIGURE 16. (Colour online) (a) Poincaré section on x = 0 for Re = 400. Grey points
indicate chaotic streamlines. The closed streamlines at the centre of the KAM tori (purple
dots) are marked by black diamonds (). (b) Three-dimensional representation of the
largest reconstructible KAM tori. The axes are not to scale.

5. Discussion and conclusions

The streamline topology of the steady three-dimensional cellular flow in a two-sided
anti-parallel lid-driven cavity has been investigated for aspect ratio I" = 1.7. Steady
flows for several Reynolds numbers above the critical onset of three-dimensional flow
were obtained from numerical long-time solutions of the Navier—Stokes equations
using the spectral method of Albensoeder & Kuhlmann (2005).

For all Reynolds numbers for which numerical simulations were carried out, Re =
0 0 300, 400, 500 00, the supercritical three-dimensional cellular
spect to the periodic free stagnation points in

It
of e I cti i d a mirror symmetry with respect to the flat
h-ﬂ
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FIGURE 17. (Colour online) (a) Poincaré section on x = 0 for Re = 500. Grey points
indicate chaotic streamlines. The closed streamlines at the centre of the KAM tori (purple

dots) are marked by black diamonds (). (b) Three-dimensional representation of the
largest reconstructible KAM tori. The axes are not to scale.

cell boundaries at z = £(1 + 2n)4/4 with n € N. At the onset of three-dimensional
flow the three periodic lines due to the two elliptic and the hyperbolic points of
the basic flow change into two hyperbolic points, one in the cell centre and one on
each cell boundary, and two saddle foci on each cell boundary. These fixed points

3 3 ation within Re € [Re., 1.0127 x Re.] such that the
spiralling-in saddle focus and while the hyperbolic
with one of the saddle foci an thus annihilating
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FIGURE 18. (Colour online) (a) Poincaré section on x =0 for Re = 700. Grey points
indicate chaotic streamlines. The closed streamlines at the centre of the KAM tori (purple
and green dots) are marked by black diamonds (). (b) Three-dimensional representation
of the largest reconstructible KAM tori. The axes are not to scale.

each other. Apart from the degenerate rectangular saddle limit cycles made by the
edges of the cell boundaries a non-trivial degenerate saddle limit cycle exists on the
i i niddle. of each.cell for all supercritical Reynolds numbers. The set
> 1.0127 x Re, exist in the steady flow for a
mbers. For the representative Reynolds number
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FIGURE 19. Closed streamlines for Re = 400, 500 and 700 (without the winding
streamlines) (a,c,e) and for Re = 700 (b,d,f) including the closed winding streamlines.
Projection on the (y, z)-plane: (a,b), projection on the (x, z)-plane: (c,d) and three-
dimensional visualization: (e,f). The solid line denotes Re =400, the dashed line Re =500
and the dotted line Re =700 in (a,c,e). In (b,d,f) we denote the single-periodic orbits with
orbits with solid lines for Re = 700.
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Re  KAM/streamline T Ar Ay Fixed point on x=0
275 T7/LY 0.0558 0.0920 0.1239 (0, 0.1424, 0.5329)
300 T7/LY 0.0478 0.0738 0.1019 (0, 0.1781, 0.5160)
Ty /Ls 0.2275 0.0463 0.0498 (0, 0.2001, 0.5701)
400 TY/LY 0.0342 0.0349 0.0711 (0, 0.2257,0.5153)
500 T7/L! 0.0272  0.0359 0.0493 (0, 0.2497, 0.5348)
700 T7/LY 0.0198 0.0243  0.0264 (0, 0.2809, 0.5345)
T,/L} 0.0457 0.0233  0.0244 (0, 0.2210, 0.5838)

TABLE 5. Minimum distances Ay and A, from the moving walls of the outermost KAM
surface T! and the corresponding closed streamline L], respectively, for different Reynolds

1

numbers. In addition, the orbit time t of the closed streamline is pr(_)vided as well as one
of the fixed points in the (x=0)-Poincaré plane corresponding to L.

of Re =500 the unstable manifold of the non-trivial saddle limit cycle on the walls
makes a heteroclinic tangle with the stable manifold of the central saddle focus and
is thus identified as a cause of the streamline chaos.

If the tangling would have originated from a heteroclinic connection at a lower
Reynolds number the flow within each cell would have been completely separated
into two subvolumes without any exchange. This is not observed, however, at slightly
supercritical Reynolds numbers. Rather, the streamlines occupy the whole cell moving
close to both of the cell boundaries (cf. figure 13b). It is thus anticipated that
a heteroclinic connection of the two manifolds does not exist at any Reynolds
number. This behaviour is in marked contrast to what is typically observed in
incompressible flows: within the generic scenario chaotic streamlines invade the flow
domain from heteroclinic connections. Examples for such heteroclinic connections
are separating streamlines in two-dimensional flow (Biemond er al. 2008), the cell
boundaries of convection cells in Rayleigh—-Bénard convection (Arter 1983), the
boundaries of Taylor vortices (Broomhead & Ryrie 1988), the separatrix in the
axisymmetric flow inside a spherical translating droplet (Kroujiline & Stone 1999)
and the separatrix in axisymmetric vortex-breakdown bubbles (Sotiropoulos et al.
2001). Upon three-dimensional perturbations of all these flows the streamline chaos
gradually grows from the heteroclinic connection. The present two-sided lid-driven
cavity at I = 1.7 behaves differently: chaos does not gradually invade the regular
region. It rather arises globally and space filling even for weakly three-dimensional
flow, because no heteroclinic connection exists. Thus the two-sided lid-driven cavity
represents another class of systems in which streamline chaos sets in globally.

Interestingly, regular regions are born upon an increase of Re, despite of the global
streamline chaos at onset. We conjecture the reduction of the number of singular
points by the merger of the hyperbolic point ~ and the saddle focus s' on the cell
boundaries causes the regularization of the flow for increasing Reynolds numbers in
the range Re € [240, 400]. The regular regions created undergo the typical resonances
before they shrink for relatively high Reynolds number to eventually disappear
completely. The structure and location of the regular regions has been considered in
detaily because they are of key importance not only for mixing, but also for the motion
and accumulation of nearly density-matched particles of finite size (Schwabe er al.
2007). Hofmann & Kuhlmann (2011) have shown that the perturbation of the motion
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of finite-size particles induced by domain boundaries can lead to a demixing of
particles which then accumulate in or near the regular regions of the flow. This effect
has been demonstrated to be the primary reason for demixing in thermocapillary
liquid bridges by Mukin & Kuhlmann (2013) and Muldoon & Kuhlmann (2016).
Evidence for the same mechanism of particle segregation in lid-driven cavities has
been provided by Kuhlmann er al. (2016). It would thus be interesting to study
in more detail the finite-size particle motion in the present system, based on the
streamline topology uncovered.
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Appendix A
A.1. Integration of streamlines

The integration of streamlines requires a flow field interpolation. Keeping the relative
and absolute tolerances in the Dormand-Prince method constant at 107'0, three
interpolation methods are tested. The first (reference) method consists of a fully
spectral Chebyshev—Gauss—Lobatto interpolation in x- and y-directions and a Fourier
interpolation in z using all 128 x 128 x 128 modes. In the second method the data on
the spectral collocation nodes are interpolated linearly and as a third case we consider
a linear interpolation on an evenly spaced mesh of 150 x 150 x 150 grid points, where
the data on the grid points are obtained from the above spectral interpolation.

While using the spectral interpolation for all 2500 streamlines per Poincaré section
is computationally too expensive, it can reasonably be applied to a few streamlines
in a region of regular flow. Figure 20 shows the resulting Poincaré points. The black
dots were obtained using the fully spectral interpolation. They delineate a KAM torus
for Re="700. The last two returns to the Poincaré plane are shown as open circles to
indicate the magnitude of the numerical error. In addition, Poincaré points obtained
using a linear interpolation on the spectral grid and using a linear interpolation on
an equidistant 150% grid are shown as open squares in (a) and open diamonds in (b),
respectively. The scatter of the data shows that the numerical error due to the linear
interpolation on a spectral grid using 128°> =2097 152 grid points (a) is slightly larger
than the one due to the fully spectral interpolation. However, the error for the linear
interpolation on the equidistant grid (b) is much larger, even though more (150° =
3375000) grid points have been used. Thus the linear interpolation on an equidistant
grid is not suitable for the integration of streamlines on the required time scales.

The above tests demonstrate the general accuracy requirements for computing
streamlines in three-dimensional incompressible steady flows with a KAM structure.
Based on these results the linear interpolation on the spectral grid is only employed
for integrating chaotic streamlines when Poincaré sections are produced to identify
the chaotic sea. For computing regular streamlines and producing the tabulated
quantitative data, however, always the fully spectral interpolation is used.

A.2. Poincaré plots and KAM surfaces
FormRen=02759230052400mandm500, there are 2500 streamlines initialized and
equidistantly distributed along the line (x, y) = (0, 0) and z € [—A4/4, A1/4]. As
explained in §4.5, less initial conditions are used for Re =240. For Re =700, 2500
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FIGURE 20. Poincaré sections at x =0 for Re =700 using different interpolation schemes.
Poincaré points obtained from the 128° spectral interpolation of the flow field are shown
by black dots in both (a,b). The closed polygon serves as a guide to the eye, where the
two last Poincaré points (open circles) have been excluded to indicate the magnitude of the
error. Open squares in (a) result from a linear interpolation on the spectral grid. Poincaré
points resulting from a linear flow field interpolation on 150* equidistant grid points (open
diamonds) are displayed in (b).

initial conditions are selected equidistantly on (y, z) = (0, 0) within the segment
xe[-0.85,0].

From all streamlines, computed up to ¢t = 1, Poincaré sections are constructed in
the plane x = 0 disregarding the direction in which the Poincaré plane is crossed.
Depending on the distribution of the Poincaré points they are assigned either to a
KAM torus or to the chaotic sea. Additional streamlines are computed in the regular
regions up to =2 for Re =400 and 500 and =3 for Re =275, 300 and 700 in
order to aid the visualization of the contours of the KAM tori in the Poincaré plane.
From the regular streamlines three-dimensional tori are constructed. To that end the
central closed streamline of each KAM torus is calculated. Then hundred points
evenly distributed along the closed streamline are defined together with the planes
normal to the closed streamline in these points. Integrating a streamline belonging to
the largest identifiable KAM torus for a time longer than the turnover time, multiple
intersections with each of the hundred planes normal to the closed streamline are
obtained. The cross section of the KAM tube is then reconstructed by interpolating
all intersection points in a cross-sectional plane using cubic splines. Multivariate
cubic Hermite splines are then employed to reconstruct each KAM surface from the
corresponding cross-sectional interpolations.
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